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Cardiac nitric oxide synthases are elevated in dietary copper deficiencyB
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Abstract

Dietary copper (Cu) deficiency leads to cardiac morphological and functional defects suggestive of heart failure. However, simultaneous

cytoprotective events also appear to occur. The molecular mechanisms responsible for this complex alteration of cardiac function by Cu

deficiency have not been elucidated. Because prior work has implicated altered nitric oxide (NO) metabolism in this altered function, we have

examined this pathway in further detail. Male Sprague–Dawley rats were fed diets that were either Cu adequate (6 mg Cu/kg diet) or Cu

deficient (b0.5 mg Cu/kg diet) for 5 weeks. Endothelial NO synthase (NOS) and inducible NOS (iNOS) protein expressions, as measured by

Western blot analysis, were 58% and 40% higher, respectively, in Cu-deficient than in Cu-adequate rat hearts. Cardiac NOS activity, as

measured by conversion of 3H-arginine to 3H-citrulline, was 130% higher in Cu-deficient than in Cu-adequate rats. NFnB is a known

transcription factor for iNOS. Activation of NFnB, determined by an ELISA for the p65 subunit, was found to be 33% higher in Cu-deficient

than in Cu-adequate rats. Coupled with prior evidence of elevated cardiac nitrate/nitrite production in Cu-deficient rats, these data suggest

multiple pathways for enhanced NO production that may contribute to altered cardiac function under dietary Cu deficiency.

D 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Dietary copper (Cu) deficiency displays a cardiomyop-

athy that includes cardiac hypertrophy, fibrosis, derange-

ment of myofibrils and impaired cardiac contractile and
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electrophysiological function [1–6]. Cu-deficient hearts

have also been shown to undergo events specifically

associated with cardiac failure, including reexpression of

fetal genes, inability to respond to an adrenergic stimulus

and apoptosis [7–11].

Molecular/cellular pathways leading to cardiomyopathy

and potential failure are being gradually developed for

cardiac disease of other origins. Two general sets of

pathways are portrayed, one leading to overt failure, the

other leading to a series of cytoprotective or survival events

[12,13]. Both failure and survival pathways may utilize

nitric oxide (NO) [14]. The former is generally initiated by

severe inflammation or oxidative stress, which causes

induction of inducible NO synthase (iNOS) and production

of large amounts of NO, which, when combined with high

levels of reactive oxygen species (ROS), can be highly

damaging. Survival pathways, on the other hand, can be

initiated by milder oxidative stress. They utilize ROS as

signaling molecules that trigger cascades of events that may
chemistry 18 (2007) 443–448



Table 1

Copper status indices

Experiment

NOS activity eNOS/iNOS protein NFnB activation

CuA (n =11) CuD (n =11) CuA (n =6) CuD (n =6) CuA (n =5) CuD (n =5)

Liver Cu (Ag/g) 12.0F0.3 1.8F0.4 9.8F0.3 0.4F0.1 11.5F0.3 1.9F0.2

Liver Fe (Ag/g) 217F22 361F53 216F19 385F99

Body weight (g) 345F14 294F11 326F7 281F13

Heart weight (mg/g) 4.9F0.3 7.1F0.3 3.2F0.1 5.4F0.4

Hematocrit (%) 40F1 18F1

All variables were significantly different in Cu-deficient (CuD) compared with Cu-adequate (CuA) rats, P b.05.
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include production of NO by either endothelial NOS

(eNOS) or iNOS, which then leads to cytoprotection [15].

The latter pathways are in some contexts characterized by

the term preconditioning in that the events set forth serve to

protect hearts against subsequent, more severe oxidative

stress [16,17].

Prior studies have shown that oxidative stress is

enhanced in Cu deficiency [18] and in hearts in particular

[19]. Further, we have shown that NO production is elevated

in hearts of Cu-deficient rats [20] and, in preliminary work,

that the cardiac iNOS protein is elevated [21]. Thus, the

signaling pathways that apply to other cardiomyopathies

may also apply to that of dietary Cu deficiency. The present

study was designed to further examine this possibility by (a)

determining whether elevation of NO production in Cu

deficiency could be confirmed by another method, total

NOS activity; (b) confirming the elevation of iNOS; (c)

determining whether eNOS was affected; and (d) assaying

for activation of a transcription factor, NFnB, which is

known to be activated by oxidative stress and has been

implicated in the up-regulation of iNOS.
Fig. 1. NOS activity as determined by 3H-arginine to 3H-citrulline

conversion; n =11 per dietary treatment. *Diet effect is significant

( P b.05, t test).
2. Materials and methods

2.1. Animals and diets

Male weanling Sprague–Dawley rats (n=50) were fed a

Cu-adequate or Cu-deficient diet. Diets were composed of

940.0 g of Cu-free, iron (Fe)-free basal diet (Catalog #TD

84469, Teklad Test Diets, Madison, WI); 50.0 g of safflower

oil; and 10.0 g of a Cu–Fe mineral mix per kilogram of diet.

The basal diet was a casein-based (200 g/kg), sucrose-based

(386 g/kg), cornstarch-based (295 g/kg) diet containing all

known essential vitamins and minerals except for Cu and

Fe. Cu and Fe were added in a cornstarch-based mineral mix

that provided 0.22 g of ferric citrate (16% Fe) and either 0 or

24 mg of added CuSO4d 5H2O per kilogram of diet.

Analysis of diets indicated average Cu concentrations of 6

and 0.3 mg of Cu per kilogram of diet for Cu-adequate and

Cu-deficient diets, respectively.

After consuming their respective diets for 5 weeks, each

rat was anesthetized with an intraperitoneal injection of Na

pentobarbital (65 mg/kg). Blood was withdrawn from the

inferior vena cava and hematocrit was measured. The

median lobe of the liver was removed for trace element
analysis by inductively coupled plasma emission spectros-

copy (ICP). The heart was removed for trace element

analysis by ICP and the following assays.

2.2. NOS activity

For NOS activity measurements and Western blotting

(described below), isolated cardiomyocytes were used; the

isolation procedure has been described previously [22]. NOS

activity was evaluated by the 3H-arginine to 3H-citrulline

conversion assay that was first described by Bredt and

Snyder [23] and modified by Samson et al. [24,25]. Plated

ventricular myocytes (~300,000/well) were placed in Hanks’

Balanced Salt Solution (HBSS) medium (20 mM HEPES,

1% penicillin–streptomycin, 0.1% BSA) for 20 min at 378C
before replacement with HBSS containing 1 ACi/ml 3H-

arginine with Traysylol (0.2 KIU/ml). The cells were then

incubated for 60 min before the reaction was terminated by

aspiration of the incubation medium and replacement with

iced HBSS containing 5 mmol/L l-arginine and 4 mmol/L

EDTA. Five minutes later, the termination medium was

removed and cells were lysed with 20 mmol/L Tris (with

5 mmol/L l-arginine and 4 mmol/L EDTA). Following

sonication, the total lysate was centrifuged (600�g, 4 8C,
10 min). An aliquot of the supernatant fraction was diluted

with 1:1 (v/v) H2O/Dowex-50W (20–50, 8% cross-linked),

mixed vigorously and loaded on a polypropylene Econo-

Column (Bio-Rad Laboratories, Hercules, CA). The gel bed

was washed three times with 2 ml distilled water, and all



Fig. 3. iNOS protein. (A) Representative Western blot; 50 Ag/lane. (B)
Relative amount of protein based on density of blots; n =6 per dietary

treatment. *Diet effect is significant ( P b.05, t test).
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effluent was collected. 3H-citrulline was counted by scintil-

lation and was regarded as proportional to NOS activity.

2.3. Western blot analysis for eNOS and iNOS

Isolated ventricular myocytes were collected and soni-

cated, and the supernatant fractions were centrifuged at

7000�g for 30 min at 4 8C. Total cell homogenates from the

pellets were used for immunoblotting of eNOS and iNOS.

We confirmed that these membrane fractions did not contain

any detectable collagens. Membrane proteins (50 Ag/lane)
were separated on 10% SDS-polyacrylamide gels in a

minigel apparatus (Mini-PROTEAN II, Bio-Rad Laborato-

ries) and transferred to polyvinylidine difluoride mem-

branes. The membranes were blocked (4% Block Ace,

Dainippon Pharmaceutical, Osaka, Japan) and then incubat-

ed for 12 h at 48C with anti-eNOS or anti-iNOS mouse IgG

monoclonal antibodies (1:1000, BD Transduction Labora-

tories, Lexington, KY). Membranes were then washed and

incubated with a horseradish-peroxidase-conjugated anti-

mouse IgG (1:5000) for 1.5 h. After immunoblotting, the

film was scanned and the intensity of immunoblot bands

was determined with a calibrated densitometer (Model GS-

800, Bio-Rad Laboratories).

2.4. NFjB activation

Whole isolated hearts were used for this assay. Heart

tissue was homogenized in 10 mM HEPES, pH 7.9, 150 mM

NaCl, 1 mM EDTA, 0.6% NP-40, 0.5 mM PMSF, 1 Ag/ml

leupteptin, 1 Ag/ml aprotonin, 10 Ag/ml soybean trypsin

inhibitor, 1 Ag/ml pepstatin on ice. Protein concentration

was determined by the bicinchoninic acid assay with

trichloroacetic acid precipitation using BSA as a reference

standard. Ten micrograms of extract was analyzed for NFjB
activation using the TransAM NFjB p65 assay (Active

Motif, Carlsbad, CA) according to the manufacturer’s
Fig. 2. eNOS protein. (A) Representative Western blot; 50 Ag/lane. (B)
Relative amount of protein based on density of blots; n =6 per dietary

treatment. *Diet effect is significant ( P b.05, t test).
instructions. The ELISA-based kit detects the p65 subunit

of the NFjB complex bound to oligonucleotide containing a

consensus binding site.

2.5. Statistics

Data were expressed as meansFS.E.M. and analyzed by

use of the Student’s t test or the Mann–Whitney Rank Sum

Test. Differences were regarded as significant at Pb.05.
3. Results

Dietary Cu deficiency in rats fed low-Cu diets was

confirmed for each of the three groups of animals for which

designated assays — NOS activity, eNOS and iNOS protein

and NFnB activation — were performed (Table 1). The

direct index of Cu status, liver Cu concentration, was

depressed in all three groups. At least one indirect index of

reduced Cu status was confirmed in each of the three

groups. These included elevated heart weight, reduced body
Fig. 4. NFnB activation as determined by an ELISA method for the p65

subunit; n =5 per dietary treatment. *Diet effect is significant ( P b.05,

Mann–Whitney Rank Sum Test).
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weight, elevated liver iron concentration and/or reduced

hematocrit [26].

Total cardiac NOS activity, as measured by the conver-

sion of l-arginine to l-citrulline, was elevated by dietary Cu

deficiency (Fig. 1).

Relative protein levels of both eNOS and iNOS were

higher in hearts of Cu-deficient rats than in hearts of Cu-

adequate rats (Figs. 2 and 3).

Activation of cardiac NFnB, as measured by its p65

subunit, was greater in Cu-deficient than in Cu-adequate

rats (Fig. 4).
4. Discussion

This study has corroborated our previous finding [20]

that cardiac NO production is elevated in hearts of Cu-

deficient rats. The potential cause for this elevation was

examined by measurement of two isoforms of NOS. Finding

of an elevation of cardiac eNOS and iNOS proteins is

consistent with the elevation in NO production and, thus,

extends our findings of altered cardiac NO metabolism in

dietary Cu deficiency.

Because of the close relationship described in the

literature between NFnB and iNOS activity, particularly in

hearts [27], activation of NFnB was examined and found to

be elevated. This is consistent with increased NFnB-
mediated transcription of iNOS, although definitive proof

of this relationship in Cu-deficient hearts requires additional

study. It was important to examine the effect of Cu

deficiency on NFnB activation directly in the heart because

findings on the relation between Cu status and NFnB in the

literature are fairly diverse and sometimes inconsistent. For

instance, immune cells show either no change with Cu

deficiency [28] or depressed activation with Cu toxicity

[29]. Tumor cells show depression of both NFnB activation

and protein with copper chelation, a presumed mimic of Cu

deficiency [30]. Vascular cells, when exposed to Cu-induced

oxidative stress, undergo increased NFnB activation [31]. In

hearts, gene expression of a subunit of InB kinase, which is

necessary for activation of NFnB, was depressed by dietary

Cu deficiency [11], but until now, the effect of dietary Cu

deficiency on cardiac NFnB activation per se had not been

examined. In answer to this, the present study demonstrated

by measurement of its p65 subunit that NFnB activation is

enhanced. In support of this finding, a recent study,

published in abstract [32], has shown that the genetic

message for the p50 (NFnB1) subunit of NFnB is also

elevated with dietary Cu deficiency. The latter two findings,

in view of the apparent depression of the upstream InB
kinase, clearly call for additional examination of the

activation mechanism of cardiac NFnB in Cu deficiency.

Oxidative stress in the heart has the potential to trigger

two generalized sets of molecular pathways, one oriented to

failure, the other to survival [12,13]. Triggering of the

failure pathway appears to require a massive oxidative insult

that stimulates production of inflammatory cytokines via
either p38 MAPK- or NFnB-mediated routes [33,34]. This

is followed by apoptosis mediated by either NO-dependent

or -independent means and subsequent contractile dysfunc-

tion and cardiac failure. The contribution of NO to cardiac

failure in this scenario is likely dependent on its combina-

tion with superoxide to form the highly reactive and

relatively long-lived peroxynitrite radical [14,35].

Prior studies have produced a large body of evidence that

both oxidative stress and signs of cardiac failure, including

apoptosis and contractile dysfunction, occur in Cu-deficient

hearts (see Section 1). Largely missing has been evidence of

the molecular mechanisms by which this is occurring,

including NO-mediated events. Although not definitive of

mechanism, findings of the present study of an elevation of

NFnB and iNOS suggest that Cu-deficient hearts could be

using an NO-mediated pathway to failure. Although

peroxynitrite has not been measured in Cu-deficient hearts,

evidence for its generalized production is supported by its

elevation in plasma of Cu-deficient rats [36] and by the

elevation of 3-nitrotyrosine in the neural tube of Cu-

deficient mouse embryos [37].

Induction of survival or cytoprotective pathways can

occur at lower levels of oxidative stress than those that

trigger failure. This is evidenced by the phenomenon of

preconditioning, the process whereby low levels or short

bouts of oxidative stress (e.g., ischemia–reperfusion) can

protect the heart against the damaging effects of subsequent

infarcts. Potential survival pathways, among which precon-

ditioning events are imbedded, include signaling cascades

involving phosphoinositol-3 (PI-3) kinase, phospholipase C

(PLC), ras-mediated activation of MAPKs [38] and hypoxia-

inducible factor-1 [39]. At least two of these pathways (PI-3

kinase and PLC) have been shown to rely on NO [40,41]. PI-

3 kinase, known to be activated by growth hormone receptor

stimulation (presumably by ROS) [38,42], can cause

activation of eNOS, NO from which can go on to reduce

apoptosis and prevent functional defects [40,43]. PLC can

also be activated by oxidative stress and initiate activation of

protein kinase C (PKC) [38], which, in turn, stimulates

NFnB-mediated induction of iNOS, the NO produced, thus

affording protection [43]. Preconditioning is a complex

phenomenon that utilizes parts of both of these pathways;

activation of eNOS is thought to contribute to an acute early

phase of preconditioning [44], while a prolonged late phase

involves activation by eNOS and induction of iNOS [45].

The present study supports elevated production of NO by

pathways utilizing both eNOS and iNOS and, thus, suggests

the possibility that chronic dietary Cu deficiency acts as a

preconditioner. Prior evidence that Cu deficiency acts like

preconditioning is the finding that Cu-deficient hearts

are relatively protected against ischemia–reperfusion injury,

showing better contractile recovery and less damage, as

indicated by reduced cardiac enzyme release, when com-

pared with Cu-adequate hearts [3]. Further, cyclic GMP

mediated by NO excitation is associated with classic or early

preconditioning [44] and cardiac cyclic GMP is elevated in
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Cu deficiency [20]. In light of the known activation of PI-3

kinase by growth factor receptors [38,42], indirect evidence

that the PI-3-kinase/eNOS pathway may contribute to

cytoprotection is the finding that cardiac insulin-like growth

factor-1 receptors are up-regulated and that blockade of

those receptors inhibits the enhanced contractility observed

in cardiomyocytes from Cu-deficient hearts [46]. The

elevation of NFnB and iNOS suggests possible participation

of the PLC pathway, but activation of PLC and/or

downstream activation of PKC will need to be shown to

confirm that possibility.

In summary, findings of elevation of NOS activity and

increases in eNOS and iNOS proteins confirm earlier

evidence of increased NO production in hearts of Cu-

deficient rats. Although the specific role of NO in Cu-

deficient hearts has not been established, findings that both

eNOS and iNOS proteins were elevated are consistent with

the possibility that both cardiac failure and survival path-

ways are up-regulated, thus agreeing with functional

evidence of the concurrent occurrence of failure and survival

events. Molecular pathways need to be further delineated in

dietary Cu deficiency not only to determine more specifically

the role of NO in events influencing heart pathology but also

to assess the role of other signaling molecules affected by Cu

deficiency. This will then allow determination of the relative

contributions of failure and survival pathways at any given

level of Cu status and, ultimately, the level of dietary Cu

required to maintain heart health.
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